Pixnapping: Bringing Pixel Stealing out of the Stone Age

Alan Wang

University of California, Berkeley

Christopher W. Fletcher
University of California, Berkeley

Pranav Gopalkrishnan
University of Washington

Hovav Shacham
University of California, San Diego

Yingchen Wang

University of California, Berkeley

David Kohlbrenner
University of Washington

Riccardo Paccagnella
Carnegie Mellon University

Abstract

Pixel stealing attacks enable malicious websites to leak sensitive
content displayed in victim websites. The idea, introduced by Stone
in 2013, is to embed victim websites in iframes and use SVG filters
to compute on, and create side channels as a function of, those web-
sites’ pixels. Fortunately, despite the danger, pixel stealing attacks
are all but mitigated today thanks to websites and web browsers
heavily restricting iframes and cross-origin cookie sharing.

This paper introduces a pixel stealing framework targeting An-
droid devices that bypasses all browser mitigations and can even
steal secrets from non-browser apps. Our key observation is that
Android APIs enable an attacker to create an analog to Stone-style
attacks outside of the browser. Specifically, a malicious app can force
victim pixels into the rendering pipeline via Android intents and
compute on those victim pixels using a stack of semi-transparent
Android activities. Crucially, our framework enables stealing se-
crets only stored locally (e.g., 2FA codes and Google Maps Timeline),
which have never before been in reach of pixel stealing attacks.

We instantiate our pixel stealing framework on Google and Sam-
sung phones—which differ in both hardware and graphical software.
On the Google phones, we additionally provide evidence that the
pixel color-dependent timing measured in our attack is due to GPU
graphical data compression. We demonstrate end-to-end attacks
that steal pixels from both browser and non-browser victims, includ-
ing Google Accounts, Gmail, Perplexity Al, Signal, Venmo, Google
Messages, and Google Maps. Finally, we demonstrate an end-to-end
attack capable of stealthily stealing security-critical and ephemeral
2FA codes from Google Authenticator in under 30 seconds.

CCS Concepts

« Security and privacy — Side-channel analysis and counter-
measures; Mobile platform security.

Keywords

Pixel stealing attacks; Side-channel attacks; Android security

1 Introduction

Pixel stealing attacks have been a significant threat to web security,
enabling malicious websites to steal sensitive user data (emails, cre-
dentials, etc.) displayed in victim websites. These attacks, starting
with Stone’s work in 2013 [48], are based on the following idea:

This work is licensed under a Creative Commons Attribution 4.0 International License.

while attacker code cannot directly read a victim website’s pixels,
SVG filters in browsers enable the attacker to perform image trans-
formations on victim pixels embedded in an attacker site’s iframes.
Stone observed that some of these transformations have pixel-color
dependent execution time—enabling a timing side channel that can
be used to leak attacker-chosen victim pixel values. Subsequent
years witnessed significant follow-on work, exploring different side
channels that arise due to SVG filters [21, 28, 34, 42, 43, 49, 51, 53].
Fortunately, Stone-style pixel stealing attacks are all but miti-
gated by major browsers and websites today. Specifically, the X-
Frame-Options header and the frame-ancestors content-security-
policy directive allow sensitive websites to prevent being framed
by other websites. Additionally, by default, modern web browsers
restrict cookies from being sent with cross-origin requests, prevent-
ing secrets from appearing in an attacker site’s iframes. While some
browsers allow websites to override these settings, most websites
do not. As a result, Stone-style pixel stealing is no longer consid-
ered a threat [16]. This is indirectly confirmed by several recent
Stone-style pixel stealing attacks, which explore more downstream
side channels and remain unmitigated [1, 3-5]. One is left to ask:
do pixel stealing attacks have a future as a relevant security threat?
In this paper, we introduce a pixel stealing framework targeting
Android devices that bypasses all browser mitigations and is addi-
tionally able to leak pixel values from non-browser apps. Our key
observation is that Android APIs enable malicious apps to construct
an analog to Stone-style pixel stealing attacks outside of the browser.
Recall that Stone-style attacks send victim pixels to the rendering
pipeline by opening a victim website in an iframe and compute
on those pixels by applying a stack of SVG filters on top of the
iframe. Our attack sends victim pixels to the rendering pipeline
by opening a victim activity using intents and computes on those
pixels using a stack of semi-transparent activities positioned in front
of the victim activity. Similarly to the aftermath of Stone’s work,
we anticipate there will be a number of side channels able to ex-
ploit pixel color-dependent behavior in the stack of activities. In
fact, Android provides far richer facilities (e.g., the attacker can run
native code) to measure these side channels relative to browser-
based Stone-style attacks. We exploit one side channel, due to GPU
graphical data compression [51], for the attacks in this paper.
Intents enable our attack to reach a broader swath of victim
pixels than was possible using iframes. While iframes can only be
used to render web pages, intents can be used to access pixels in
both web pages and native Android apps. These include secrets
that are only stored securely on the victim device—such as SMS and

https://orcid.org/0000-0002-4474-3012
https://orcid.org/0009-0007-7214-3536
https://orcid.org/0009-0009-4140-307X
https://orcid.org/0000-0002-9995-5995
https://orcid.org/0009-0008-0225-8714
https://orcid.org/0009-0000-9121-9734
https://orcid.org/0000-0002-9552-8216
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0

Signal messages, 2FA codes, and the Google Maps Timeline—which
have never before been in reach of pixel stealing attacks.

Stacks of activities enable similar functionality as Stone’s stack of
SVG filters but require some effort to exploit. Consider: SVG filters
in Stone-style attacks are quite powerful—enabling an attacker
to perform arbitrary convolutions, scales, blurs, etc. By contrast,
the only comparable transformation available through Android
activities is blur. Despite this limitation, we show how it is still
possible to compute on attacker-chosen victim pixels in a fashion
that creates measurable pixel color-dependent timing disturbances.

We instantiate our framework on four Google Pixel phones and
a Samsung Galaxy S25 phone. For the Google phones, we perform
a root cause analysis of pixel color-dependent timing differences
and show that the root of the side channel is likely GPU graphical
data compression [51]. Relative to the Google Pixel phones, the
Samsung Galaxy features quite different hardware and graphical
software. Our goal in evaluating both is to demonstrate how our
framework can be applied to a variety of Android devices.

We demonstrate end-to-end attacks capable of stealing security-
critical and ephemeral secrets while hiding the attack from the
user. Inside the browser, we steal pixels from a number of websites
(Google Accounts, Gmail, Perplexity Al), all of which are protected
against Stone-style pixel stealing attacks. Outside the browser, we
steal pixels from Google Maps, Google Messages, Venmo, Signal,
and Google Authenticator. Several of these apps contain secrets that
are fundamentally out of reach for Stone-style pixel stealing attacks.
Our attack on Google Authenticator uses additional optimizations—
including the OCR-style technique proposed in Stone’s original
paper [48]—to leak 2FA codes before they disappear.

This paper’s contributions can be summarized as follows:

(1) We propose a pixel stealing framework in Android which
enables attackers to reach any website and any app.

(2) We demonstrate our framework’s applicability to multiple
Android devices by instantiating it on four Google Pixel
phones (6, 7, 8, and 9) and a Samsung Galaxy S25 phone,
which differ in both hardware and graphics software.

(3) We demonstrate several end-to-end attacks that steal sensi-
tive pixels from both browser and non-browser apps while
hiding themselves from the user. Notably, these include an
optimized end-to-end attack that recovers ephemeral 2FA
codes from Google Authenticator in under 30 seconds.

Disclosure. We disclosed our findings to Google on February 24,
2025. Google rated the issue as “High severity”, assigned CVE-2025-
48561, and committed to awarding us a bug bounty. On September 2,
Google released a patch for our attacks, which we became aware
of on September 4. We then discovered a workaround to the patch
and additionally observed that it does not mitigate Section 4.2’s
instantiation. On September 8, we disclosed these new findings to
Google, which rated them as “High severity”. On September 19,
we also disclosed to Samsung that Google’s patch was insufficient
to protect Samsung devices. As of October 13, we are still coordi-
nating with Google and Samsung regarding disclosure timelines
and mitigations. Separately, we also disclosed Section 3.1’s app list
bypass vulnerability to Google on April 23, 2025; Google rated it
“Low severity” and resolved the report as “Won’t fix (Infeasible)”.

Alan Wang et al.

Intent intent = new Intent (Intent.ACTION_VIEW,

Uri.parse("h : v.google.com"));
intent.setPackage ("com.android.chrome");
startActivity (intent);

Listing 1: Example of an implicit intent that opens the
Chrome browser to www. google. com.

2 Background
2.1 Android app architecture and graphics

Activities. An Android app is comprised of multiple activities, which
serve as an app’s entry point to communicate with users and are
independent units that can be called separately [6]. Each activity is
implemented as a separate process by default and defines a set of
callback functions invoked on specific events (e.g., onCreate() is
called when the activity is created). When the user launches an app,
one activity, denoted the main activity, is the first to appear [10].

Intents. Intents enable an activity (the caller) to invoke another
activity (the callee). Intents can be explicit or implicit. With explicit
intents, the caller specifies both the app (package) and the specific
activity (callee) it wishes to invoke. With implicit intents, the caller
specifies an action (e.g., sending an SMS message or opening a
website), can optionally specify additional arguments to that action
(e.g., the message recipient or website to be opened) and the app
that should respond to the action (e.g., Google Messages or Chrome),
but does not specify the activity (callee) that receives the intent.
Android determines which callee receives the implicit intent based
on the specified action in the intent [9]. In the case where multiple
activities can respond to an implicit intent (action), the user is
prompted to select which activity to invoke. Listing 1 shows sample
code to send an implicit intent that opens a URL in Chrome.
Which activities can be the callee of an intent is specified by
the app’s manifest file. This file is an Extensible Markup Language
(XML) file that lists all activities in the app (along with permissions
and other app information). Each activity in the manifest has an
exported attribute which determines what apps can invoke that
activity. If the activity’s exported attribute is true, any activity
in the system can send an intent to that activity. If the activity’s
exported attribute is false or is undefined, only activities in the
same app can send an intent to the activity [7]. Further, for activities
that can receive implicit intents, the manifest file specifies one or
more intent filters, which describe the general actions the activity
can receive. Figure 1 shows an example of how a manifest file
determines the allowed interactions between activities.

Tasks. In Android, a task represents the context through which
a user interacts with a set of activities [17]. Typically, each task
appears as a separate entry in the Recents screen, which allows the
user to switch between open tasks. A task’s back stack represents
the history of activities the user has navigated to within a task.
Activities are stored in the back stack in a last in, first out order.
For example, when the user first launches the Gmail app from the
app launcher, a new task is created with Gmail’s Inbox activity. We
call this activity the root activity on the task’s back stack. When the
user selects an email from the Inbox, Gmail opens a new activity
to view that email, and Android adds this activity to the task’s

Pixnapping: Bringing Pixel Stealing out of the Stone Age

Phone
/ - App/Task1l

App/Task 2 \\

Activity C

Activity A

N
w~ || Send Intent C
®;

Send Intent D
- = Implicit Intent to
Explicit Infent to D

_ [Manifest File |
¥ ' Manifest File for App 2

Back

Stack Activity D

Blocked

I

Manifest File %

Activity

[<activity .
android:name=".activityC" A.ccepts explicit
android:exported="true"> intents from

Declares other apps
activityC <intent-filter> } This activity accepts
<Jintent-filter> implicit intents

| </activity>

[<activity

\ Declares | android:name=".activityD" App 1 can’t ‘
\ activityD android:exported="false"> | gpen this activity /
\ L </activity> /

Figure 1: App 1 sends an implicit intent to activityC and an
explicit intent to activityD. Since activityC declares an in-
tent filter, it can receive implicit intents. However, activityD
cannot receive intents from App 1, as the activity is marked
as exported=false, causing the explicit intent to be rejected.

back stack. When the user presses the back button from the email
viewing activity, that activity is popped off the back stack and the
Inbox activity is resumed. Finally, when the user presses the back
button from the Inbox (root) activity, Android resumes the task that
was running before Gmail’s task came to the foreground.

By default, when a callee activity is opened via an intent, Android
creates a new instance of that activity in the task that invoked the
intent. This occurs even when the callee belongs to a different app
than the caller. However, if the callee activity has the android: -
launchMode="singleTask" attribute in the manifest file, Android
does not open this activity in the same task as the caller. Instead,
Android either starts a new task for the callee or, if the callee already
has a task running in the background, brings that existing task to
the foreground to handle the intent. In the latter case, the whole task
of the callee is brought to the foreground of the caller—including
the activities in the back stack of the callee.

Starting activities from the background. To reduce unwanted user
interruptions, Android imposes restrictions on when a background
activity is allowed to start another activity. Google outlines several
conditions under which a caller activity is permitted to launch other
activities [14]. These include, for example, when the caller has a
visible window in the foreground, when the caller is in the back
stack of the foreground task, or if the app has an activity that started
very recently (within 10 s), regardless of whether this caller is in
the back stack of the foreground task. Tuncay et al. show that this
third condition allows a caller activity to retain the ability to start
activities from the background indefinitely, by periodically starting

an invisible activity every 10 s and immediately moving this activity
to the background (with the moveTaskToBack API) [50].

Windows and views. Each activity owns a window, with a specified
width and height, that governs where the app’s pixels are drawn.
A window can be transparent and as small as one pixel. A view
is Android’s basic Ul building block which occupies a rectangular
sub-area inside a window. For example, a view might correspond
to a button, text box, or image. The activity’s window houses all
the activity’s views which are organized hierarchically.

SurfaceFlinger. When multiple activities are visible simultaneously
on the screen, Android combines their windows together in a pro-
cess called composition. This process is handled by an Android
service called SurfaceFlinger. By default, SurfaceFlinger treats all
windows being composed as having the same upper-left anchor
point on the screen. After composition, SurfaceFlinger is respon-
sible for sending the final composited screen to the display [15].
We note that all operations related to the composition of multiple
windows (e.g., window blurs), which we refer to as cross-window
operations, are handled by SurfaceFlinger using GPU shaders.

SurfaceControl. Each activity has a single root SurfaceControl
that represents its window in the Android rendering pipeline.
This SurfaceControl defines various properties of the activity’s
window—such as its size, blur radius, and upper-left anchor point—
that are used by SurfaceFlinger when composing the screen. Al-
though not directly accessible to developers, SurfaceControl can
be partially configured through the window object returned by
Activity.getWindow(). For example, calling getWindow() . set-
BackgroundBlurRadius(blurRadius) applies a blur effect to the
window by updating the underlying SurfaceControl.

VSync signals. In Android, VSync signals are used to synchronize
three key phases of the rendering pipeline: when activities perform
rendering, when SurfaceFlinger wakes up to composite multiple
windows, and when the display refreshes [19]. These signals orig-
inate from the display subsystem and are typically generated at
a fixed rate matching the screen refresh rate—for example, every
16.6 milliseconds on a 60 Hz display. In response to each VSync
signal, Android schedules rendering work for activities that are
both visible and need to be redrawn (e.g., due to UI updates). Ad-
ditionally, Android allows activities to register a callback that is
invoked after each VSync signal, giving activities an opportunity
to execute custom logic at the start of each new frame.

2.2 Android hidden API

Android supports many public APIs that developers can use to
build apps. However, it also features several methods that are only
used internally by Android and are meant to be inaccessible to
the developer at compile time. These methods, referred to as the
hidden API, are annotated with the @hide Javadoc attribute in the
Android source code. At the time of writing, there exist several
bypass mechanisms that allow developers to use Android’s hidden
API—for example by using Java’s Unsafe APIs [56].

2.3 Browser pixel stealing attacks

Embedding content from other pages is a core feature of the web,
most directly supported by iframes which allow rendering a (po-
tentially mutually distrusting) page within another. Because of this,
the embedding website must be prevented from directly access-
ing the contents of the embedded website (and vice versa). This is
achieved via the Same-Origin Policy (SOP), disallowing site/origin A
from accessing data from site/origin B. It is then somewhat surpris-
ing that browsers have long included structured vector graphics
(SVG) filters—applied via CSS—for custom visual effects on arbitrary
HTML elements, including iframes embedding other websites.

In 2013, Paul Stone [48] demonstrated that using specific combi-
nations of SVG filters, an attacker can mount a side-channel attack
to recover the pixels of such an iframe. Stone observed that some
of these SVG transformations had pixel color-dependent execu-
tion time—creating a timing side channel that can be used to leak
pixel colors when applied to an iframe the framing website cannot
directly interact with. The attack proceeds in three steps:

(1) First, the attacking website uses iframes to embed a victim
website. This enables the attacker to submit victim pixels
to the browser’s rendering pipeline.

(2) Second, the attacker applies a sequence of styling tricks
and SVG filters on the victim iframe. This enables them to
(semi-arbitrarily) compute on individual victim pixels.

(3) Third, the attacker measures side channels created by
Step 2’s computation—e.g., by measuring the time to render
browser frames using the requestAnimationFrame API
(invoked when page rendering completes).

There is significant flexibility in how Step 2 is implemented, as
there are many different SVG filters ranging from convolution, to
blur, to displacement maps, and they may be layered or composed.

A challenge in Stone’s attack is that the attacker needs to simul-
taneously compute over an individual victim pixel at a time and
induce a large enough timing difference to be measurable by Step 3.
Stone solves this by using SVG filters and other features as follows:

(1) A color transformation filter binarizes the image to black
and white pixels.

(2) Another layered element masks out all but one target pixel.

(3) The attacker uses styling options to mirror the target black-
or-white pixel into an enlarged N X N area.

(4) The region is multiplied against a noisy image to obtain a
uniform black or noisy result.

(5) Finally, an SVG filter with data-dependent timing (e.g.,
feMorphology) is applied.

By setting N large (e.g., N = 100), the timing difference created by
the final filter is made practical to measure.

Stone’s work inspired many follow-on pixel stealing attacks [21,
28,34, 42,43, 49, 51, 53]. All these subsequent attacks utilize Stone’s
techniques and differ primarily in what causes the timing side chan-
nel generated in Step 2 and measured in Step 3. For the remainder
of the paper, we refer to all pixel stealing attacks that utilize Stone’s
browser-based framework as Stone-style pixel stealing attacks.

Fortunately, Stone-style pixel stealing attacks are largely mit-
igated by major browsers and websites today. Specifically, the X-
Frame-Options header and the frame-ancestors content-security-
policy (CSP) directive allow sensitive websites to prevent being

Alan Wang et al.

framed by other websites, blocking Step 1 in Stone’s attack. Ad-
ditionally, by default, modern web browsers restrict cookies from
being sent with cross-origin requests. For example, Firefox uses
Total Cookie Protection [33, 37], which partitions cookie storage
by the top-level domain being visited, Safari blocks third-party
cookie access by default [54], and Chrome enforces the SameSite
=Lax cookie policy, which prevents cookies from being sent for
cross-origin frame requests unless SameSite was explicitly set to
None [2]. Without cookies, an embedded iframe is unlikely to dis-
play sensitive information. Taken together, the above mean that
Stone-style pixel stealing attacks impact very few websites today.

2.4 GPU.zip side channel

GPU.zip is a side channel exploiting graphical data compression
in modern GPUs [51]. Graphical data compression has been de-
ployed widely in mobile devices as increasing screen sizes drive
up the per-frame DRAM traffic. Such compression reduces DRAM
traffic by identifying redundancy in each frame and storing/trans-
ferring those frames between the CPU and GPU in a compressed
format. To compress, the entire frame is broken into smaller, indi-
vidually compressed, blocks along with additional metadata about
the compression status of each block. As the compression is soft-
ware transparent, it must be lossless. These lossless schemes are
known to result in a data-dependent compression ratio and hence
a data-dependent amount of data to transfer. Since the memory
bandwidth is a limited resource, data-dependent DRAM traffic then
translates to a data-dependent rendering time or can otherwise be
monitored by a co-located attacker observing contention.

3 Android Pixel Stealing Framework

In this section, we present our pixel stealing framework for Android.
Our key observation is that Android APIs enable an attacker to
instantiate a Stone-style pixel stealing framework outside of the
browser. Recall from Section 2.3 that existing browser mitigations
block pixel stealing on most websites today. Our framework by-
passes all these browser-based mitigations. Further, our framework
is able to, for the first time, leak pixel values from non-browser apps.

Overview. The next three sections are organized to mirror the three
main steps in Stone-style attacks (Section 2.3). First, Section 3.1
(mirroring Step 1) describes how an attacker can cause the user’s
device to render victim app pixels. Section 3.2 (mirroring Step 2)
describes activities which isolate, enlarge, and compute on a target
pixel submitted for rendering. Lastly, Section 3.3 discusses side-
channel measurement capabilities on Android relevant to Step 3.
The above steps are shown visually in Figure 2.

Some parts of our framework, e.g., the enlargement activity
(Section 3.2) and the side channel used, require device-specific
considerations. These are described in Section 4.

Threat model. We use the standard phishing and tapjacking attack
threat model [22, 25-27, 30, 31, 39, 45, 50, 55]. That is, to mount our
attack, the attacker must convince the user to install and run an
Android app containing their attack code (either in the main app
or an included library). We call this app the attacker app. Unlike
phishing and tapjacking, however, we assume the attacker’s goal
is to leak pixel values displayed by other locally installed apps.

Pixnapping: Bringing Pixel Stealing out of the Stone Age

Victim Enlargement Transmitting
T K_H r A) 2
et
] Victim
b X Ox
jvit? ity ity
(i (ivif) i
A*"/1 Vel T
H_J
Masking Encoding Displayed
Screen

Signal

Figure 2: Overview of our pixel stealing framework. The
leftmost/rightmost activity in the figure is at the bottom/top
of the activity stack. The activity at the top of the stack is
considered the layer closest to the user’s eyes.

The attacker app does not use any Android permissions (i.e., no
permissions are specified in its manifest file). After the user runs
the attacker app, we make no further user-interaction assumptions.

3.1 Step 1: Submitting victim pixels to the
Android rendering pipeline

In step 1 of a pixel stealing attack, the attacker must trick the user’s
device into sending victim app pixels to the rendering pipeline.
Stone-style pixel stealing attacks achieve this step in a browser
context by loading victim websites in iframes. In contrast, our
framework achieves this step by sending Android intents to a victim
app’s activities. Recall from Section 2.1 that when a victim activity
receives an intent, its associated window is opened and sent to the
Android rendering pipeline. As we demonstrate below, this places
all pixels in the victim activity’s window at risk.

Mitigations to Stone-style attacks work by preventing sensitive
websites from being embedded in iframes or preventing sensitive
website content from being shown inside iframes. Our framework
bypasses all these mitigations, as it does not rely on iframes and
can target any content displayed in a victim activity’s window. This
includes sensitive website content displayed in browser apps as well
as sensitive data only displayed in non-browser apps, e.g., Google
Maps’ timeline, private chat messages, ephemeral 2FA codes and
more. The only requirement is that the victim activity must be
openable by the attacker app via intents, as we discuss next.

Reachable victim activities. Recall from Section 2.1 that for a victim
activity to be openable by other apps, it must have the exported
attribute set to true in the victim app’s manifest file. Fortunately,
all standalone Android apps have at least one exported activity
(generally the main activity) so that the top-level launcher can open
them. Hence, at least one activity in each victim app is always reach-
able from the attacker app via explicit intents.! Further, activities that
specify both the exported=true attribute and intent filters are also

In Section 5.2, we survey 99,592 Android apps and show that these apps typically
have additional exported activities beyond their main activity.

reachable from the attacker app via implicit intents. Recall from
Section 2.1 that implicit intents support optional additional argu-
ments that can influence the behavior of the callee activity. Since the
caller is the attacker, all of this information is attacker-controlled.
This enables the attacker to gain deeper access to the victim relative
to explicit intents. For example, the attacker can direct a browser
app to a specific URL or the SMS app to a specific conversation.

Determining if a victim app is installed. Recall that no permissions
are required for the attacker app to send intents to a victim activity.
However, the attacker app does not know a priori what apps are
installed on the device. This is an issue because if the attacker tries
to send an intent to an activity of an app that is not installed, the
user gets a warning saying that the attacker app “stopped working”.
We bypass this warning by launching intents in a try-catch block.
This way, if the victim app is not installed, the resulting exception
is handled gracefully without crashing the attacker app.

Of independent interest, we also observe that when the attacker
sends an intent to an installed victim app, the attacker can prevent
the victim app from appearing on screen as follows. First, the at-
tacker sends an intent to the victim activity with FLAG_ACTIVITY_
EXCLUDE_FROM_RECENTS, which keeps the victim app hidden from
the Recents screen. Second, it sends an intent with CATEGORY_HOME,
which prevents back button presses from reaching the victim app
(this is only needed if the victim activity opens in a separate task).
Lastly, the attacker sends itself an intent with FLAG_ACTIVITY_
CLEAR_TOP, which brings the attacker app back to the foreground.
When the attacker sends these intents back-to-back, we observe
that neither the victim app nor the Home screen become visible,
and the attacker app remains on screen the entire time.®

The combination of the above two techniques—the try-catch
block and the stealthy handling of installed app launches—allows
an attacker to determine if an arbitrary app is installed on the
device without triggering any warning (if the app is not installed)
and without visibly opening the app being queried (if the app is
installed). This finding is of interest beyond the scope of pixel
stealing. For example, it could be used by attackers for user profiling.
We stress that querying the list of all installed apps on a user’s device
is explicitly disallowed for developers since Android 11 [13].4

3.2 Step 2: Computing on victim pixels

In step 2 of a pixel stealing attack, the attacker must be able to
perform computations on individual victim pixels that were sub-
mitted to the rendering pipeline. Stone-style pixel stealing attacks
achieve this step by applying a stack of SVG filters that isolate, bina-
rize, enlarge, and transmit individual victim pixels. In contrast, our
framework achieves this step by opening a stack of semi-transparent
activities that SurfaceFlinger composites with the victim activity. As
we show, this composition process enables an attacker to achieve

2Should a victim app define identical intent filters for multiple activities, the user would
be prompted to select which activity should receive the implicit intent (Section 2.1).
This would require undesired user interaction. In practice, however, we have not
encountered any app where an intent filter matches multiple activities in that app.
3We hypothesize that the victim activity or Home screen may briefly become visible
in the rare cases they start rendering before the third intent brings the attacker app
back to the foreground, but we never observed this in our experiments.

4The exception is for apps that specify the restricted, “high-risk” QUERY_ALL_PACKAGES
permission in their manifest file (subject to Google’s approval) [18].

similar capabilities to Stone’s SVG filter stack. The process is il-
lustrated in Figure 2. For now, we assume the attacker’s goal is to
determine whether individual victim pixels are white or non-white.
We discuss leaking other colors later in this section.

Activity stack. Recall from Section 2.1 that when a caller activity
sends an intent to a callee activity, Android moves the callee activity
to the foreground (along with its task’s back stack if android: -
launchMode="singleTask") and moves the caller activity to the
background. However, despite no longer being in the foreground,
the caller activity is still allowed to send intents that start additional
activities from the background. For example, the caller activity can
send another intent to launch a second callee activity. In this case,
the second callee moves to the foreground, while the first callee is
moved to the background. Further, SurfaceFlinger treats the window
of the second callee as being overlaid in front of the window of
the first callee. In our framework, the attacker app leverages this
behavior to layer a stack of semi-transparent activities in front of a
newly launched victim activity. In the following, we describe how
the attacker uses this stack and SurfaceFlinger’s APIs to isolate,
enlarge, and transmit individual pixels from the victim activity.

Isolating a victim pixel. The attacker’s first goal is to isolate indi-
vidual victim pixels that were submitted to the Android rendering
pipeline. Our framework accomplishes this goal as follows. First,
the attacker opens an attacker-controlled activity—the masking
activity—on top of the victim activity. Since the masking activity
is opened after the victim activity, Android places the masking
activity in the foreground and moves the victim activity to the
background. Next, the attacker app makes all its existing activities
transparent, except for the masking activity. This way, if the victim
activity and the masking activity are in different tasks, all activities
positioned between them become invisible.® Finally, the attacker
sets the masking activity’s window to be all opaque white pixels ex-
cept for the pixel at the attacker-chosen location which is set to be
transparent. When SurfaceFlinger composites the masking activity,
any potential transparent activities between the masking activity
and the victim activity, and the victim activity, the result is a win-
dow of all white pixels except for the pixel at the attacker-chosen
location, whose value is set to the victim pixel’s color.

Enlarging a victim pixel. The attacker’s second goal is to enlarge
the victim pixel isolated by the masking activity. Stone-style at-
tacks achieve this using SVG filters applied via CSS transforms
(e.g., “scale”). However, SurfaceFlinger’s APIs do not support such
transforms and—on the devices we tested—implement only one
cross-window operation: window blur [20] (or, simply, blur).

A naive enlarging approach might be to apply the blur effect—
possibly multiple times—directly to the composited masking win-
dow. However, since all the pixels surrounding the target pixel in
this window are white, repeated blurring causes the target pixel’s
color to quickly fade to white, regardless of its original value.

To overcome this challenge, our framework leverages a subtle
quirk in how SurfaceFlinger implements blur. Specifically, we ob-
serve that when blur is applied to a window with a blur radius
of at least 10 px, and the blur output is restricted to a sub-region

SRecall from Section 2.1 that when a callee that belongs to a different task than the
foreground task is opened, the whole task of the callee is brought to the foreground.

Alan Wang et al.

Blurred Image p
copied into undefi

Figure 3: An subtle quirk in the way SurfaceFlinger imple-
ments blur enables a stretch-like effect to the pixels along
the perimeter of the blurred pixel window. Our framework
leverages this observation for pixel enlargement.

of the window, SurfaceFlinger effectively produces a stretch-like
effect, where the pixels along the perimeter of the blurred region
are extended outward, filling the rest of the window.

Why does this stretch-like effect occur? SurfaceFlinger’s blur
effect is implemented using bilinear interpolation. When blur is
applied to an N X N window but the blur output is restricted to an
MxM sub-region of that window,® SurfaceFlinger uses interpolation
to estimate pixel values outside of the blurred sub-region, before
storing the result onto blur’s N X N output buffer. For pixels that
are in the N X N window but outside the M X M blurred sub-region,
interpolation assigns the value of the nearest edge pixel from the
blurred region. This behavior is illustrated in Figure 3.

Our framework exploits this observation to enlarge the victim
pixel isolated by the masking activity. To do so, the attacker opens a
new attacker-controlled activity—the enlargement activity—on top
of the masking activity. This new activity is fully transparent; hence,
when SurfaceFlinger composites it with the masking activity, the
result looks like the masking activity. Then, the attacker applies the
blur effect with a blur radius of 10 px to the enlargement activity,
while restricting the blur output to a 1 X 1 sub-region that overlaps
with the victim pixel. As a result, that 1 X 1 region is filled with
a blurred (and slightly dimmed) version of the victim pixel and—
due to bilinear interpolation—all other pixels in the enlargement
window inherit the color of this single blurred pixel.

Transmitting a victim pixel. The attacker’s third goal is to perform
computations on an isolated and enlarged victim pixel to transmit
its value to Section 3.3’s side-channel receiver. Stone-style attacks
achieve this by repeatedly performing data-dependent SVG filter
operations such as feMorphology on the enlarged victim pixel.
In contrast, our framework achieves this by repeatedly applying
data-dependent blur effects on the enlarged victim pixel.

Recall that the attacker’s goal is to determine whether the victim
pixel is white or non-white. Our framework enables this as follows.
First, the attacker opens a new semi-transparent activity—the en-
coding activity—in front of the enlargement activity. The purpose

®How to restrict the blur output to an M X M sub-region of the window is device
specific and explained in Section 4.

Pixnapping: Bringing Pixel Stealing out of the Stone Age

of the encoding activity is to encode a single bit of information—
whether the victim pixel is white or not—into different patterns
on the screen. Second, the attacker opens a stack of transparent
transmitting activities that apply blur effects over the encoding ac-
tivity. The purpose of the transmitting activities is to transmit the
encoded bit over a side channel, assuming the rendering pipeline
includes pattern-dependent optimizations that leak information.
The exact configuration of the encoding and the transmitting activ-
ities depends on the specific side channel being exploited. We defer
details on these activities to Section 4.

Leaking non-white victim pixel colors. So far, we have assumed the
attacker app’s goal is to determine whether a victim pixel is white
or non-white. This is sufficient in most pixel stealing attacks that
are trying to recover text. More generally, however, our framework
can determine whether a victim pixel is of an arbitrary color ¢ or
non-c. To do so, the attacker app can simply change the opaque
pixels of the masking activity and of the encoding activity to c.

3.3 Step 3: Measuring the side effects of
computations on victim pixels

In step 3 of a pixel stealing attack, the attacker must be able to
measure the side effects of step 2’s secret-dependent computations.
Suppose that during the rendering of step 2’s transmitting activities,
some information about the victim pixel color is leaked via a side
channel. How can an attacker app learn this information? In this
section, we discuss two attacker capabilities that our framework
supports to facilitate this step. These capabilities are agnostic to the
side channel being exploited. As in Stone-style attacks, the details of
how these capabilities are used in practice depends on the specific
side channel being exploited—which we discuss in Section 4.

Executing native code. The first attacker capability supported by our
framework is the ability to run native code. Specifically, the attacker
app’s activities can include Java, Kotlin, C/C++, and even assembly
code that performs side-channel measurements asynchronously
with the rendering of the transmitting activities. The ability to run
native code enables the attacker to exert direct control over memory
management and access fine-grained timers—both of which are
useful capabilities in mounting side-channel attacks and are more
powerful than what is supported by browser-based Stone-style pixel
stealing attacks, which are limited to running code in managed
language runtimes (e.g., JavaScript and WebAssembly).

Measuring rendering time. The second attacker capability supported
by our framework is the ability to measure the rendering time per
frame (referred to as rendering time). This is enabled by Android’s
VSync signals. Recall from Section 2.1 that these signals are sent
at regular intervals to activities that are both visible and need
to be redrawn (e.g., due to UI updates). Android also allows an
activity to register a callback that is triggered on each VSync signal.
Importantly, the timing of this callback—conceptually similar to
requestAnimationFrame in JavaScript—can reflect how long the
system took to render the previous frame, since the callback is
triggered only once the system is ready to render the next frame.
In our framework, the attacker app registers a VSync callback
on the rearmost transmitting activity (the one positioned behind
all other transmitting activities in the activity stack). Each time the

callback is invoked, it calls View. invalidate (), marking the activ-
ity’s window as needing to be redrawn and ensuring it continues to
receive future VSync signals. Invalidating this window also causes
Android to invalidate the windows of all the transparent trans-
mitting activities layered in front of it. This forces SurfaceFlinger
to recomposite these windows. As a result, the next VSync call-
back is not invoked until SurfaceFlinger finishes compositing and
rendering these windows, or until the next display refresh interval—
whichever occurs later. This enables the attacker to observe delays
caused by the rendering of the transmitting activities.

4 Framework Instantiations

In this section, we describe two possible instantiations of Section 3’s
pixel stealing framework. Specifically, Section 4.1 describes an in-
stantiation of our framework on four recent Google Pixel phones
and Section 4.2 describes an instantiation of our framework on a
Samsung Galaxy S25 phone. Due to the different hardware and
graphics stacks used by these devices, the two instantiations dif-
fer in the way Step 2 of the framework is implemented. However,
Steps 1 and 3 are implemented the same way. In particular, for Step 3,
both instantiations use the rendering time measurement capability
and target victim pixel color-dependent rendering time differences
due to pattern-dependent optimizations (e.g., GPU.zip [51]). In Sec-
tion 4.3, we benchmark both framework instantiations using the
438 x 48 pixel checkerboard from Andrysco et al. [21].

Experimental setup. We conduct this section’s experiments on five
devices: Google Pixel 6, Google Pixel 7, Google Pixel 8, Google Pixel
9, and Samsung Galaxy S25. All phones run Android 15 and are at
API level 35, the latest at the time of writing. All phones are con-
nected to their chargers during the experiments.” Each experiment
consists of a single app that uses the framework from Section 3
to distinguish between white and non-white pixels in a victim ac-
tivity. This section’s victim activities consist of either all white
or all black pixels. We additionally instrument the app to prevent
the screen from locking by setting the FLAG_KEEP_SCREEN_ON flag,
which does not require any permissions.

4.1 Instantiation on Google Pixel phones

We now describe the device-specific enlargement activity and trans-
mitting activities we use when instantiating our Android pixel steal-
ing framework on Google Pixel 6, 7, 8, and 9 phones. All other parts
of the framework remain as described in Section 3.

Enlarging a victim pixel. Recall from Section 3.2 that our frame-
work’s enlargement activity requires the ability to restrict the blur
output to a 1 X 1 sub-region that overlaps with the victim pixel.
To achieve this, our Google Pixel framework instantiation uses
SurfaceControl’s crop API prior to applying the blur effect. Ap-
plying crop before blur requires using Android’s hidden API (cf.
Section 2.2). We also observe that the crop API’s y-coordinate is
offset relative to the y-coordinate of the activity’s window. We de-
scribe how we account for this offset in Appendix A.1. We confirm
that specifying the 1 X 1 target pixel region as input to the crop API
and later applying the blur operation to the enlargement activity’s
window produces the desired pixel enlargement behavior.

"We verified that all our findings also hold when the phones were not charging.

Google Pixel 6 Google Pixel 7
150
400
€ 100 €
3 3
5] o
o © 200
50
0 0
0 5 10 15 20 25 30 35 40 45 0 20 40 60 80 100
Time (ms) Time (ms)
Google Pixel 8 Google Pixel 9
150 Black
White 100
€ €
5 100 5
o o
(& (&S] 50
50

0 0
0 20 40 60 80 100 120 140 0 20 40 60 80 100
Time (ms) Time (ms)

Figure 4: Rendering times for a configured activity stack in
front of a black and white victim pixel on the Google phones.

Transmitting a victim pixel. We target pattern-dependent optimiza-
tions, such as GPU.zip (cf. Section 2.4), to transmit the value of the
victim pixel. Thus, the goal of our instantiation’s encoding activity
is to encode white pixels as a highly redundant visual pattern and
non-white pixels as a highly non-redundant visual pattern. To do
this, we fill the encoding activity’s window with opaque white
pixels but leave a number of transparent pixels randomly scattered
throughout the window. This way, when SurfaceFlinger compos-
ites the encoding and enlargement activities, the result appears
all white if the victim pixel is white, or white speckled with the
victim pixel’s color if the victim pixel is not white. We then open the
stack of transparent transmitting activities—all of which apply blur
effects with a 1 px blur radius on the encoded pixel. We empirically
determine how many transmitting activities are needed on each
device to generate an observable rendering time difference.

For each experiment, we collect 1,000 measurements of the ren-
dering time using Section 3.3’s methodology. Figure 4 shows the
rendering time distributions when using 25, 55, 60, and 60 transmit-
ting activities on our Google Pixel 6, 7, 8, and 9, respectively. We
also report the average and standard deviation of rendering times
in Table 1. As expected, rendering is faster when the victim pixel is
white and slower when it is black. This rendering time difference
is consistent with prior work’s observations on the side effects of
GPU graphical data compression [51], which compresses redundant
patterns more efficiently than non-redundant ones.

Root cause analysis. We confirm the existence of GPU graphical data
compression on our Google Pixel phones by reverse engineering the
compression algorithm on their Mali GPU. We present the reverse
engineered Mali compression algorithm in Appendix B.

We additionally present evidence attributing the root cause of the
rendering time side channel we exploit on Google Pixel phones to
graphical data compression. First, we design two encoding activity
patterns: pattern one places 1 X 1 transparent dots 1 px apart, and

Alan Wang et al.

Google Pixel 6 Google Pixel 7

R o o
e Experiment Data

Regression Line

N

(&3]
0
(9
.

N

o

.
a
o

-
(9]
.
N
(&3]
«
.

Render Time Mean (ms)

Render Time Mean (ms)
e
o

20 40 60 80 50 100 150
Total DRAM Traffic (GB) Total DRAM Traffic (GB)

Google Pixel 8 Google Pixel 9

~
o

o

[o2]
(&
.
.
(2]
o

[o2]
o
.
(o))
(5]

(%))
o
°
a
o
.

Render Time Mean (ms)
3
Render Time Mean (ms)

N
(&3]
»

.

50 100 150 50 100 150
Total DRAM Traffic (GB) Total DRAM Traffic (GB)

Figure 5: Rendering time vs. total DRAM traffic for the root
cause analysis experiment using configured activity stacks.
The data points are in ascending order with respect to the
percentage of the screen covered by pattern one.

pattern two places them 16 px apart. In both cases, a white victim
pixel results in a white screen, while a black victim pixel results in
a speckled screen. Based on our reverse engineering, the encoding
output of a white victim pixel is compressible under both patterns;
however, given a black victim pixel, the encoding output is not
compressible with pattern one, but compressible with pattern two.

We then rerun our rendering time experiment from above using
a black victim pixel and a combination of these two encoding pat-
terns. Specifically, we vary the proportion of the encoding activity
covered by pattern one from 0% to 100% (in 10% increments) and
fill the remaining area with pattern two. For each configuration,
we collect 200 measurements of the rendering time along with the
total DRAM traffic (via Arm’s Performance Studio). Because pattern
one produces incompressible output while pattern two produces
compressible output, we expect DRAM traffic to increase linearly
as the share of pattern one increases. Further, if the rendering time
side channel is indeed due to compression, we expect the render-
ing time to also increase linearly. Figure 5 shows the results. The
R-squared value for how well DRAM traffic predicts average ren-
dering time are 0.92, 0.92, 0.94, and 0.86 for the Google Pixel 6, 7, 8,
and 9, respectively, matching our expectation. We use pattern one
as the encoding pattern for the remainder of this paper.

To rule out other potential root causes such as effects due to
power and thermal throttling [28, 49, 52, 53], we monitor additional
performance counters including GPU frequency, CPU frequency,
GPU power, and thermal throttling status. We monitor GPU fre-
quency by reading the cur_freq file in the Mali folder located at
/sys/devices/platform/. We monitor CPU frequency and GPU
power via Android Studio’s Profiler, and thermal throttling sta-
tus via Arm’s Performance Studio. In all experiments, we observe
no statistically significant difference in the GPU frequency, CPU
frequency, GPU power, and thermal throttling status.

Pixnapping: Bringing Pixel Stealing out of the Stone Age

Taken together, the above observations provide strong evidence
that the data-dependent rendering time side channel exploited by
our pixel stealing framework instantiation on Google Pixel phones
is due to the graphical data compression optimization of Mali GPUs.

4.2 Instantiation on a Samsung Galaxy S25

As with the Pixel description, we now describe the device-specific
aspects of our framework instantiation on our Samsung Galaxy S25.
All other parts of the framework remain as described in Section 3.

Isolating a victim pixel. On our Samsung Galaxy S25, the blur ap-
plied during pixel enlargement causes enlarged non-white pixels to
appear excessively white, making it difficult to distinguish between
a white and non-white pixel. To mitigate this, in the masking activ-
ity of our instantiation, we use a 2 X 2 transparent region instead
of a 1x 1, thereby increasing the number of pixels being enlarged.

Enlarging a victim pixel. The enlargement activity configuration
used on our Google Pixel phones does not produce the desired pixel
enlargement behavior on our Samsung Galaxy S25. Thus, for this
instantiation, we adopt the following, different configuration. To re-
strict the blur output to a 2 2 sub-region that overlaps with the iso-
lated victim pixels, we use a special Android view called Surface-
View. Unlike regular views, a SurfaceView has its own Surface
Control, which is a child of the activity’s root SurfaceControl.
Further, the attacker can access this child SurfaceControl and
configure its rendering properties. In particular, the attacker sets
the SurfaceView scale to 0.001 along both the x and y dimensions
and positions it such that the downscaled surface overlaps precisely
with the victim pixels.® After configuring the position and scale, we
apply a blur effect on the SurfaceView. On our Samsung Galaxy
S25, the blur effect is not a public API by default (unlike on Pixel
phones) and can only be set using the Hidden API. We confirm that
these steps produce the desired pixel enlargement behavior.

Transmitting a victim pixel. As in Section 4.1, we target pattern-
dependent optimizations to transmit the value of the victim pixel.
However, we experimentally find that the transmitting activity
configuration used on our Google Pixel phones does not produce
pixel color-dependent rendering time differences on the Samsung
Galaxy S25, even when using a large number of transmitting activi-
ties (e.g., 70). Thus, for this instantiation, we adopt the following,
different configuration. In each transmitting activity, we use the
hidden API to define 30 blur regions, each with a distinct blur radius
ranging from 1 px to 30 px. Defining multiple regions causes multi-
ple blur computations within a single activity. However, to ensure
these computations are not skipped by SurfaceFlinger’s caching
mechanism, each blur region must use a unique radius.

We use this configuration and Section 3.3’s measurement method-
ology to collect 1,000 rendering time measurements per victim pixel.
Figure 6 shows the results obtained with 5 transmitting activities.
As expected, rendering is consistently faster when the victim pixel
is white. This demonstrates that rendering time still leaks pixel
color information on the S25, despite its framework instantiation
using a different configuration than the one on Google Pixel phones.

8Moreover, this change has minimal impact on attack accuracy (cf. Section 4.3).
9As in Section 4.1, we observe that the scale API’s y-coordinate is offset relative to the
one of the activity’s window. Appendix A.2 describes how we account for this offset.

Samsung Galaxy S25

800 Black
. 600 White
c
g 400
(&)

200

0
0 10 20 30 40 50 60 70
Time (ms)

Figure 6: Rendering times for a configured activity stack in
front of a black and white victim pixel on the Galaxy S25.

Table 1: Activity stack and checkerboard experiment results.
Checkerboard results shown both when targeting single pix-
els (px/s) and when targeting 1 dp X 1 dp windows (px/s+).

Activity Stack Test Checkerboard Test
Black (ms) White (ms) | Acc. px/s px/s+

Pixel 6 223+ 44 16.6x2.2 | 96.18% 0.23 091
Pixel 7 56.0+ 57 451+48 | 9583% 0.19 0.77
Pixel 8 65.4+10.8 41.0+53 | 86.63% 0.19 0.77
Pixel 9 644+ 47 529%56 | 9492% 0.15 0.59
Galaxy S25 | 29.0+ 4.6 18.1+4.6 | 95.14% 0.73 2.11

Root cause analysis. We leave a full root cause analysis on Samsung
devices to future work, as we lack access to the necessary per-
formance counters and cannot confidently attribute the observed
timing differences to GPU graphical data compression.

4.3 Evaluation

To benchmark our pixel stealing framework, we reproduce the
48x48 checkerboard pattern used by Andrysco et al. [21]. We display
the checkerboard in a victim activity and layer our framework
instantiation on top. For the Pixel 6, Pixel 7, Pixel 8 and Galaxy S25,
we collect 34 rendering time measurements per pixel; for the Pixel
9, we collect 64 measurements to account for increased noise. We
take the median of these measurements and compare it to a timing
cutoff to classify each target pixel as white (low timing) or black
(high timing). This cutoff is determined during an initial calibration
phase, which collects 200 measurements each for black and white
pixels and sets the threshold between their median values.

To avoid noise due to throttling, we insert a 1.5-second delay
between experiments on successive pixels. We report the leakage
throughput (px/s) for each device in Table 1. The Samsung Galaxy
S25 achieves a higher throughput than the Google Pixel phones
because its implementation leaks a 2 X 2 pixel region at a time. We
use these configurations in the remainder of the paper.

Improving speed. Generally, mobile devices have large pixel densi-
ties, and most apps use density-independent pixel (dp) units when
drawing to the screen. Dp is a virtual unit that scales with screen
density, where 1 dp = 1 px at 160 dots per inch. We find that 1 dp
corresponds to 2.625 px on the Google Pixel phones and 3 px on the

Galaxy S25. Since dp, not pixels, generally represents the smallest
graphical unit, a simple optimization to improve our attack through-
put without compromising accuracy is to adjust the region leaked
per measurement, denoted as resolution, to 1 dp X 1 dp. An attacker
can adjust the region leaked per measurement by adjusting the
transparent region in the masking activity. For the Pixels, we adjust
to a 2 px X 2 px'? resolution, and for the Galaxy S25, we adjust to a
3 px X 3 px resolution. The improved throughput after adjusting
the attack resolution is shown in Table 1. We experimentally find
that these resolutions have minimal impacts on our attack accuracy,
and we adopt these settings for the remainder of the paper.

5 End-To-End Attacks

In this section, we evaluate the capabilities of our pixel stealing
framework. Unlike Stone-style pixel stealing attacks, which affect
only a limited set of websites, our framework targets a broader
range of websites as well as a new security domain: non-browser
Android apps. We discuss our attacks against browsers and non-
browser apps in Section 5.1 and Section 5.2, respectively. For all
attacks, we use the same experimental setup as Section 4.

5.1 Browsers

First, we describe how an attacker can open any target website
either directly in the browser or in a Custom Tab. Then, we present
a comparative survey of websites vulnerable to Stone-style pixel-
stealing attacks versus those vulnerable to our framework. The
results highlight that our framework poses a much broader threat.
We illustrate this with three end-to-end attacks targeting Google
Accounts, Gmail, and Perplexity Al all of which are sensitive web-
sites that were not vulnerable to Stone-style pixel stealing attacks
due to iframe embedding restrictions.

Opening websites via Intents. To open a website, an attacker can
send an implicit intent to any browser with the view action and set
the data field to the desired target URL, as shown in Listing 1. An
attacker can also create an implicit intent using the Custom Tabs
API to open a target URL in a Custom Tab, a lightweight, embedded
version of Chrome commonly used by Android apps to display web
content in the same task without launching the full browser [12].
For all following web attacks, we perform the attack on both the
Chrome browser and Chrome’s Custom Tabs.

Web survey. We start by surveying and comparing the number
of websites vulnerable to our framework versus Stone-style pixel
stealing attacks. Recall from Section 2.3 that a victim website is vul-
nerable to Stone-style attacks (in Chrome) only if it is iframeble and
it disables cross-site cookie sharing protections (SameSite=None).
We examine these properties for the top one million websites listed
in the Chrome User Experience Report (CrUX) [29, 47]. For each
website, we collect whether it can be embedded in an iframe (ifram-
able), and its SameSite cookie policy—categorized as None, Lax, or
Strict. Cookies with the None attribute are included in all requests,
including cross-site contexts, making them fully accessible across
frames and tabs (in Chrome). Lax cookies are sent during top-level
navigations using the GET method—such as when clicking a link—
but not with requests due to iframes or images. Finally, Strict

OF]oating-point resolutions are not supported.

Alan Wang et al.

|
I Iframeable

200 Status 542,318 . . .
Requests 860,285 ™ Contains SameSite: None Cookies

1,000,000 I 2,032

Other Status
77,619

No Reply
= 62,096

Figure 7: Results of our web survey. Only 2,032 (0.2%) are
vulnerable to Stone-style pixel stealing attacks, which re-
quire both iframe embedding (iframeable) and cookies with
SameSite=None. In contrast, all reachable websites are vulner-
able to our framework.

cookies are only sent in same-site contexts, meaning they are ex-
cluded from all cross-site requests, including top-level navigations
and requests initiated via iframes or Custom Tabs [36].

For each website, we send a GET request with a current Chrome-
on-macOS user-agent string. We mark a website as reachable if it
returns an HTTP 200 status code, and unreachable if it does not re-
spond within five seconds. We determine if it can be embedded in an
iframe from the X-Frame-Options and Content-Security-Policy
headers and extract its SameSite cookie policy.

We show our survey result in Figure 7. Among the top 1,000,000
websites, 860,285 are reachable. Of the reachable websites, only 0.2%
are vulnerable to Stone-style pixel stealing attacks. The small set
of vulnerable websites may explain why Google has deprioritized
mitigating recent Stone-style attacks on Chrome [1, 3-5].

In contrast, our framework can target any website that displays
private information. 100% of the reachable websites are vulnerable
to our framework when being opened in the Chrome app. When
opened in a Custom Tab, 99.3% of reachable websites are vulnerable;
the remaining 0.7% mark cookies with SameSite=Strict, which
are withheld on cross-site navigations initiated by an external app.

We note that several websites implement anti-crawler measures
or have varying cookie-sharing states after a user logs in which
affects the accuracy of our survey. For example, Wikipedia enables
cross-site cookie sharing after a user is logged in, but this is not
captured by our methodology. Nonetheless, this survey provides a
valuable overview of the limited reach of Stone-style attacks.

Google Account. To start, we target the URL myaccount.google.
com and recover the screen region displaying the user’s full name.
This region occupies 56,120-77,616 pixels on the screen (depending
on the device), and our unoptimized attack requires 12-28 hours to
recover all these pixels across all phones. An attacker can also use
URL fragment identifiers to scroll the page to specific sections of the
Google Account page, including those displaying the user’s physical
addresses, email addresses, account settings, account sessions, con-
nected third party apps and services, birthday, gender, and more. For
example, navigating to myaccount.google.com/personal-info
#:~:text=Addresses scrolls to the Addresses section and displays
the user’s home address in a region occupying 15,600-21,546 pixels
(depending on the device). Our unoptimized attack requires 3-8
hours to recover all these pixels across all phones.

Pixnapping: Bringing Pixel Stealing out of the Stone Age

Gmail. Next, we target the URL mail.google. com. Specifically, we
recover the screen region displaying the sender, subject, and first
line of text of the top email in the user’s inbox. This region occupies
56,800-82,425 pixels (depending on the device), and our unopti-
mized attack requires 10-25 hours to recover all these pixels across
all phones. An attacker can also use URL fragment identifiers to
search through the user’s inbox or navigate to a specific Gmail
folder. For example, the #search/social+security+number frag-
ment identifier finds all emails containing “social security number”.
Advanced search queries additionally support filters such as sender,
recipient, size, and date—allowing the attacker to target and leak spe-
cific emails. Moreover, the search results page also displays a count
of matching emails, which can be used to fingerprint users [32].

Perplexity Al. As a final example of a website that is vulnerable to
our framework but not to Stone-style attacks, we target the URL
www.perplexity.ai/library, which displays a user’s recent chat
history (topic, 2-line summary, and date of each conversation) in
a screen region occupying 56,392-72,198 pixels per conversation
(depending on the device). Our unoptimized attack recovers all
these pixels in 10-25 hours across all phones.

5.2 Non-browser Android apps

We now evaluate the threat our framework poses to non-browser
apps. As with websites, we conduct a survey to quantify the number
of activities that our framework can target and then provide four
end-to-end attacks targeting widely used apps that handle sensitive
user data: Google Maps, Google Messages, Venmo, and Signal. We
highlight that non-browser apps represent a distinct security do-
main, as some secrets—such as those extracted from Google Maps,
Signal, and Google Messages—do not have web access. As a result,
these secrets are only accessible through our framework and are
fundamentally out of reach for Stone-style attacks.

App survey. We start by surveying what activities, and associated
apps, are vulnerable to our framework. Recall from Section 3.1 that
an activity is considered vulnerable if an attacker can complete the
first step of a pixel stealing attack: sending victim pixels into the
Android rendering pipeline. This can be achieved by sending an
intent to a target activity belonging to a victim app.

We analyze the manifest.xml files from 99,592 apps on the
Google Play Store using the manifest dataset from Beer et al. in Tap-
Trap [24]. For our analysis, we exclude 2,809 apps targeting SDKs
earlier than Android 13, which are not available our devices [11].
From the remaining 96,783 apps, we identify 387,958 activities that
can be opened by our attacker app via explicit intents; of these,
238,036 can also be targeted by implicit intents. A median of two
activities per app are exported. 109 apps do not have any exported
activities; however, further analysis determined these were exten-
sions for other apps. Overall, all the available, standalone apps we
analyzed are vulnerable to our framework. Even worse, many apps
have several vulnerable (exported=true) activities.

Google Maps. For our first end-to-end attack, we demonstrate leak-
ing Google Maps’ Timeline, which stores a user’s complete location
history, including timestamps and addresses of all visited places.
This location history would include sensitive information such as
home address, daily routines, and more. Since 2024, web access to

Home (Pixel Steak Burger)
Tv. Manaus, 20 - Xavier Mala, R
12:00 PM - 12:01 PM

Figure 8: Recovered Google Maps Timeline entry on a Pixel 7.

Timeline has been removed due to privacy concerns [46], leaving
the Google Maps app as the only access point.

We find that an attacker can open Timeline to any date via im-
plicit intents and leak a user’s entire location history using our
framework. To do so, the attacker issues an intent to the Google
Maps package (com.google.android.apps.maps) with the data
field set to www.google.com/maps/timeline. For a specific date,
the attacker can append a query parameter, e.g., www . google . com/
maps/timeline?pb=!1m2!1m1!1s<yyyy-mm-dd>. Each Timeline
entry is displayed in a region of 54,264-60,060 pixels (depending
on the device), which our unoptimized attack takes 20-27 hours to
recover across all devices. Figure 8 shows our recovered entry.

Venmo. Our second attack targets financial data displayed in the
Venmo app. We observe that an attacker can use implicit intents to
open any activities in the Venmo app, including those displaying
account balance, transaction history, linked bank accounts, state-
ments, and tax documents. For example, an intent with the data field
set to venmo. com/settings/profile displays the user’s Venmo
username. Using the leaked username, an attacker can craft an-
other implicit intent with the URL venmo. com/u/<username> to
access the user’s profile, which displays recent transactions and
the account balance. Our unoptimized attack leaks the account bal-
ance, which is displayed in a screen region of 7,473-11,352 pixels
(depending on the device), in 3—-5 hours across all phones.

Google Messages. Next, we target SMS conversations displayed in
the Google Messages app. Sending an explicit intent to Google
Messages’ main activity displays recent conversations, and sending
an implicit intent can open a specific SMS conversation by setting the
intent’s data field to smsto: <PHONENUMBER>. For example, since 2FA
codes are generally sent from a limited set of known short phone
numbers, an attacker may target these numbers directly. In our
evaluation, we target a received SMS message that reads “Super
secret pixel stealing message” and is displayed in a screen region of
35,500-44,574 pixels (depending on the device). Our unoptimized
attack recovers all these pixels in 11-20 hours across all phones.
Unlike our prior attacks (which test for white vs non-white
pixels), our Google Messages attack aims to distinguish gray vs non-
gray pixels (for received messages) or blue vs non-blue pixels (for
sent messages). We achieve this by changing the opaque pixels of
the masking and encoding activities to gray or blue, as discussed in
Section 3.2. In practice, the attacker may not initially know whether
a particular screen region contains a sent or a received message.
Because sent messages appear on the right and received messages
on the left, this can be resolved by probing (with a blue-vs-non-blue
test) a few pixel locations on the right side of the conversation. If
blue is detected, the region is treated as sent; otherwise it is treated
as received, and the gray-vs-non-gray test is used for full recovery.

We are currently clean on OPSEC

Godspeed to our Warriors

Figure 9: Recovered private Signal text message on a Pixel 7.

Signal. For our final end-to-end attack, we target the private mes-
saging app Signal. An attacker can use implicit intents to open any
private conversation by setting the implicit intent’s data field to
sgnl://signal.me/#p/<PHONENUMBER>. Similarly to the Google
Messages attack, we aim to distinguish gray vs non-gray pixels (for
received messages) or blue vs non-blue pixels (for sent messages).
In our evaluation, we target a received Signal message displayed in
a screen region occupying 95,760-100,320 pixels (depending on the
device). Our unoptimized attack recovers all these pixels in 25-42
hours across all phones, even with Signal’s Screen Security feature
enabled. Figure 9 shows the recovered message.

6 Case Study: Ephemeral 2FA Code Recovery

The attacks described in Section 5 take hours to steal sensitive
screen regions—placing certain categories of ephemeral secrets out
of reach for the attacker app. Consider for example 2FA codes. By
default, these 6-digit codes are refreshed every 30 seconds [38]. This
imposes a strict time limit on the attack: if the attacker cannot leak
the 6 digits within 30 seconds, they disappear from the screen.

In this section, we demonstrate an optimized end-to-end attack
that reliably leaks 6-digit 2FA codes from Google Authenticator
in less than 30 seconds. Our attack combines the techniques from
Section 5 with a few optimizations, most notably, the OCR-style
technique proposed in Stone’s original paper [48]. This technique
recognizes that leaking all pixels of each secret digit is unnecessary.
Instead, assuming the font is known to the attacker, each secret
digit can be differentiated by leaking just a few carefully chosen
pixels. Below, we describe how we implement this technique.

We stress that the results of this Section’s optimized attack (sec-
onds instead of hours) are a more realistic representation of the
attack speed than the times presented in Section 5. However, ap-
plying the OCR-style technique requires carefully selecting which
pixels differentiate each digit of the secret, which is currently a
manual, per-app process. While in this paper we only manually
select these pixels for Google Authenticator, we do think that this
process could be automated with further engineering.

Implementation. Google Authenticator displays 2FA codes using
the Google Sans font. We apply Stone’s OCR-style algorithm to
Google Sans digits to determine which pixels differentiate each
digit and find that each digit can be uniquely identified using at
most 4 pixels. An example coordinate that bisects the set of digits is
shown in Figure 10. Unlike the fixed-width font (Courier) targeted
in Stone’s work, however, Google Sans is variable-width. To address
this, our attack implementation dynamically shifts the target pixel
positions based on the known width of each leaked digit. Addition-
ally, Google Authenticator inserts extra spacing between the third
and fourth digits of the 2FA code (splitting the 6-digit code into
two 3-digit groups). We find that this spacing varies based on the

Alan Wang et al.

Pixel = Black Pixel = White

104 104
20 20
30 30
40 40
50 50
60 4 60 -
0 60 0 20 40 60

Figure 10: The left figure has digits 2, 3, 4, 7, and 8. The right
figure has digits 0, 1, 5, 6, and 9. The attacker can bisect the
set of possible digits in half by leaking a specific pixel’s color.

value of the third digit. After recovering the third digit, our attack
implementation adjusts the pixel offset accordingly.

To meet the strict 30-second deadline for the attack, we also
reduce the number of samples per target pixel to 16 (compared
to the 34 or 64 used in earlier attacks) and decrease the idle time
between pixel leaks from 1.5 seconds to 70 milliseconds.!! To ensure
that the attacker has the full 30 seconds to leak the 2FA code, our
implementation waits for the beginning of a new 30-second global
time interval, determined using the system clock.

Evaluation. We use our end-to-end attack to leak 100 different 2FA
codes from Google Authenticator on each of our Google Pixel
phones. Our attack correctly recovers the full 6-digit 2FA code
in 73%, 53%, 29%, and 53% of the trials on the Pixel 6, 7, 8, and 9,
respectively. The average time to recover each 2FA code is 14.3,
25.8, 24.9, and 25.3 seconds for the Pixel 6, Pixel 7, Pixel 8, and Pixel
9, respectively. We are unable to leak 2FA codes within 30 seconds
using our implementation on the Samsung Galaxy S25 device due
to significant noise. We leave further investigation of how to tune
our attack to work on this device to future work.

7 Discussion

Attack stealth. As we have described it, our attack framework gen-
erates graphical artifacts visible to the user. These artifacts can be
hidden, with no significant effect on attack speed or accuracy, by
layering a slightly transparent (less than 1%) hiding activity over
the attack. The hiding activity can display benign content consis-
tent with the app’s claimed function. Figure 11 shows what the user
sees when the attack uses a hiding activity.

Attack limitations. Our attack relies on a hidden API bypass in both
framework instantiations (cf. Section 4). Hidden API bypasses are
known for all recent Android versions. Early approaches using
Java Reflection were blocked in Android 9; the current widely used
bypass takes advantage of Java’s Unsafe class [56]. Other bypass
techniques may exist, and it is also possible that our framework
could be instantiated using only the intended SurfaceFlinger AP

Our demonstrated leakage rate, 0.6 to 2.1 pixels per second, is also
low (though sufficient to recover Authenticator codes). Experience

10n the Pixel 6, we use 24 trials.

Pixnapping: Bringing Pixel Stealing out of the Stone Age

One of the earliest known instances of
a pixel-stealing attack was described
by Paul Stone in a white paper
presented at the Black Hat Briefings
conference in 2013.[6] Stone's
approach exploited a quirk in how
browsers rendered images encoded

in the SVG format. SVG images
support various features, including
the ability to apply SVG filters that
applies transform image content.
Stone discovered that by measuring
the time it took for a browser to render
a morphological filter over a known
set of pixels and then comparing this
with the time taken to render the same
filter over a pixel from an unknown
website, he could infer the color of

the pixels. This allowed him to build a
grayscale image of the other website
which could be then used to leak
information about the website.[7][8]

Figure 11: User’s view when using a slightly transparent (less
than 1%) hiding activity over the attack.

with browser pixel stealing suggests that more carefully optimized
exploits that rely on rendering time as the leakage channel could
approach a rate of one pixel per screen refresh; exceeding this
bound would require a higher-capacity leakage channel [43].

Web history sniffing. It has long been assumed that browser pixel
stealing also enables history sniffing: the attacker embeds links
on their own page, then uses pixel stealing to determine whether
the browser styled them as visited or unvisited. Once Chrome’s
history partitioning mechanism rolls out [8], links will remain
unvisited on the attacker’s site regardless of the user’s history.
With our framework, an attacker could nevertheless check whether
a user has visited site A from site B (say, Google) by embedding
and stealing pixels from a page B that contains a link A.

Mitigations. Recall that there are three conditions required for our
pixel stealing framework. Mitigating any one of the conditions will
stop our attacks. Experience with browser pixel stealing suggests
that condition three should not be the focus of mitigation: attackers
are likely to discover and apply a different side channel if ours is
patched. Opening and layering activities is a core Android feature,
so changes that target condition one may not be acceptable to users.

We therefore believe that our attack would be best mitigated by
targeting condition two, i.e., by preventing attacker computations
on victim pixels. One way to achieve this would be to allow de-
velopers to restrict transparent layering over their activities to an
explicit allowlist. An analogous mechanism, the frame-ancestors
CSP directive, defanged Stone-style attacks on the web by allowing
sites to opt out of framing or to restrict framers to an allowlist. One
other way to achieve this would be to allow developers to hide
sensitive visual content when layering occurs.

8 Related Work

Pixel stealing attacks. Barth [23] was the first to observe, in 2011,
that CSS filters applied to cross-origin pixel data might leak that
data via a timing channel. Two years later, Stone [48] (and, indepen-
dently, Kotcher et al. [35]) identified an SVG filter whose implemen-
tation in Firefox exhibited color-dependent timing variation and

showed how the timing variation could be amplified and measured,
proving that Barth was correct. Follow-up work instantiated Stone’s
framework with other violations of constant-time programming
principles in the browser graphics stack [21, 28, 34, 42, 43,49, 51, 53].
Of these, Wang et al. [51] are closest to our work in taking advan-
tage of data-dependent graphical data compression. Our work is
the first to translate Stone’s ideas from the browser to mobile apps,
making it possible to target all websites (not just those that agree
to be framed) as well as native apps.

Custom Tabs security. Palfinger et al. [44] initiated the study of
the security implications of Android Custom Tabs. They showed
that an attacker app could deduce whether the user was logged
onto a site loaded in a Custom Tab by measuring the time taken to
load the website. Beer et al. [25] investigated the Custom Tab API,
showing that it could be used to violate integrity and confidentiality
guarantees of a loaded website (though they did not demonstrate
pixel stealing via the API). To steal pixels from a website, our attack
can load it either using a Custom Tab or directly in the browser
app, bypassing the Custom Tabs API.

Mobile Ul attacks. Extensive work has also been done on phishing
[22, 26, 27, 30, 50] and tapjacking (aka clickjacking) [31, 39, 45, 55]
attacks. These attacks take advantage of user confusion between
safe and unsafe UI contexts to elicit unsafe and unintended actions.
While our attacks rely on overlaying the attacker app over a target
app, they exploit properties of the Android graphics stack and do
not rely on user confusion or interaction (beyond installing and
launching the attacker app).

9 Conclusion

Stone’s story of knocking iframes and SVG filters together to steal
pixels hasn’t really changed with a decade of attacks. The particu-
lars shifted as side channels came and went while restrictions from
X-Frame-Options, frame-ancestors, and browser mitigations in-
creasingly prevented the worst outcomes.

This pattern obscured the true lesson of the story: letting adver-
saries compute on your pixels will leak them.

Here, we have evolved pixel stealing beyond the constrained
iframe attack model to the full range of mobile apps with predictable,
and concerning, consequences. Like browsers at the beginning, the
intentionally collaborative and multi-actor design of mobile app
layering makes the obvious restrictions unappealing. App layering
is not going away, and layered apps would be useless with a no-third-
party-cookies style of restriction. A realistic response is making the
new attacks as unappealing as the old ones: allow sensitive apps to
opt-out and restrict the attacker’s measurement capabilities so that
any proof-of-concept stays just that.

Acknowledgments

We thank the anonymous reviewers for their helpful feedback.
We also thank Philipp Beer and Marco Squarcina for the fruitful
conversations on their Tabbed Out work [25] and for sharing the
manifest dataset from their TapTrap work [24] with us. This work
was funded by ARL grant W911NF-25-1-0179, NSF grants 1942888,
1954521, 2120642, 2120696, 2153388, and 2154183, and gifts from
Google, Intel, Mozilla, and Qualcomm.

Availability

We have open sourced all of this paper’s artifacts at https://github.
com/TAC-UCB/pixnapping.

References

(1]

(2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[22]

[23]

[24]
[25]

[26]

[27]

2017. Canvas composite operations and CSS blend modes leak cross-origin
data via timing attacks. Online: https://issues.chromium.org/issues/40086984.
Accessed on October 9 2025.

2020. Feature: Cookies default to SameSite=Lax. Online: https://chromestatus.
com/feature/5088147346030592. Accessed on April 10 2025.

2023. Security: Cross-origin pixel reading via SVG filter data-dependent GPU
memory bandwidth usage. Online: https://issues.chromium.org/issues/40063650.
Accessed on October 9 2025.

2023. Security: Timing Attack Using SVG Filters on Visited Links to Sniff His-
tory (Based on GPU-Zip). Online: https://issues.chromium.org/issues/40943106.
Accessed on October 9 2025.

2024. Cross-origin pixel reading via data-dependent SVG filter power usage and
Intel Thread Director. Online: https://issues.chromium.org/issues/381109468.
Accessed on October 9 2025.

2025. Activity | API reference | Android Developers. Online: https://developer.
android.com/reference/android/app/Activity. Accessed on April 10 2025.

2025. <activity> | App architecture | Android Developers. Online: https://
developer.android.com/guide/topics/manifest/activity-element. Accessed on
April 10 2025.

2025. Feature: Partitioning :visited links history. Online: https://chromestatus.
com/feature/5101991698628608. Accessed on April 3 2025.

2025. Intents and intent filters | App architecture | Android Developers. Online:
https://developer.android.com/guide/components/intents-filters. Accessed on
April 10 2025.

2025. Introduction to activities | App architecture | Android Developers. On-
line: https://developer.android.com/guide/components/activities/intro-activities.
Accessed on April 10 2025.

2025. Meet Google Play’s target API level requirement | Other Play guides
| Android Developers. Online: https://developer.android.com/google/play/
requirements/target-sdk. Accessed on September 10 2025.

2025. Overview of Android Custom Tabs | Views | Android Developers. On-
line: https://developer.android.com/develop/ui/views/layout/webapps/overview-
of-android-custom- tabs. Accessed on April 10 2025.

2025. Package visibility filtering on Android | App architecture | Android Develop-
ers. Online: https://developer.android.com/training/package-visibility. Accessed
on September 10 2025.

2025. Restrictions on starting activities from the background | App architecture |
Android Developers. Online: https://developer.android.com/guide/components/
activities/background-starts. Accessed on April 10 2025.

2025. SurfaceFlinger and WindowManager | Android Open Source
Project. Online: https://source.android.com/docs/core/graphics/surfaceflinger-
windowmanager. Accessed on April 10 2025.

2025. SVG and CSS filters can leak cross-origin data via iframes. Online: https:
//issues.chromium.org/issues/401081629. Accessed on October 9 2025.

2025. Tasks and the back stack | App architecture | Android Developers.
Online: https://developer.android.com/guide/components/activities/tasks-and-
back-stack. Accessed on April 10 2025.

2025. Use of the broad package (App) visibility (QUERY_ALL_PACKAGES)
permission. Online: https://support.google.com/googleplay/android-developer/
answer/10158779. Accessed on April 10 2025.

2025. VSync | Android Open Source Project. Online: https://source.android.com/
docs/core/graphics/implement-vsync. Accessed on April 10 2025.

2025. Window blurs | Android Open Source Project. Online: https://source.
android.com/docs/core/display/window-blurs. Accessed on April 10 2025.
Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin Lerner,
and Hovav Shacham. 2015. On Subnormal Floating Point and Abnormal Timing.
In S&P.

Simone Aonzo, Alessio Merlo, Giulio Tavella, and Yanick Fratantonio. 2018.
Phishing Attacks on Modern Android. In CCS.

Adam Barth. 2011. Timing Attacks on CSS Shaders. Online:
https://web.archive.org/web/20120207083807/http://www.schemehostport.
com/2011/12/timing-attacks-on-css-shaders.html. Accessed on March 24 2025.
Philipp Beer, Marco Squarcina, Sebastian Roth, and Martina Lindorfer. 2025.
TapTrap: Animation-Driven Tapjacking on Android. In USENIX Security.
Philipp Beer, Marco Squarcina, Lorenzo Veronese, and Martina Lindorfer. 2024.
Tabbed Out: Subverting the Android Custom Tab Security Model. In S&P.
Antonio Bianchi, Jacopo Corbetta, Luca Invernizzi, Yanick Fratantonio, Christo-
pher Kruegel, and Giovanni Vigna. 2015. What the App is That? Deception and
Countermeasures in the Android User Interface. In S&P.

Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. 2011.
Analyzing inter-application communication in Android. In MobiSys.

[28

[29]

[30

(31]

™~
=2

[42

[43]

[44

[46]

[47

(48]

[50

[51]

(52]

[53

[55

[56

Alan Wang et al.

Inwhan Chun, Isabella Siu, and Riccardo Paccagnella. 2025. Scheduled Disclosure:
Turning Power Into Timing Without Frequency Scaling. In S&P.

Zakir Durumeric. 2025. Chrome (CrUX) Top Million Websites. Online: https:
//github.com/zakird/crux-top-lists. Accessed on April 10 2025.

Adrienne Porter Felt and David Wagner. 2011. Phishing on mobile devices. In
W2SP.

Yanick Fratantonio, Chenxiong Qian, Simon P Chung, and Wenke Lee. 2017.
Cloak and dagger: from two permissions to complete control of the UI feedback
loop. In S&P.

Nethanel Gelernter and Amir Herzberg. 2015. Cross-site search attacks. In CCS.
Johann Hofmann and Tim Huang. 2021. Introducing State Partitioning. Online:
https://hacks.mozilla.org/2021/02/introducing-state- partitioning/. Accessed on
Apr 1 2025.

David Kohlbrenner and Hovav Shacham. 2017. On the effectiveness of mitigations
against floating-point timing channels. In USENIX Security.

Robert Kotcher, Yutong Pei, Pranjal Jumde, and Collin Jackson. 2013. Cross-origin
pixel stealing: Timing attacks using CSS filters. In CCS.

Rowan Merewood. 2019. SameSite cookies explained | Articles | web.dev. Online:
https://web.dev/articles/samesite-cookies-explained. Accessed on September 10
2025.

Mozilla. 2024. Introducing Total Cookie Protection in Standard Mode. On-
line: https://support.mozilla.org/en-US/kb/introducing- total- cookie-protection-
standard-mode. Accessed on April 10 2025.

D. M’Raihi, S. Machani, M. Pei, and J. Rydell. 2011. TOTP: Time-Based One-Time
Password Algorithm. RFC 6238.

Marcus Niemietz and Jérg Schwenk. 2012. UI Redressing Attacks on Android
Devices. Black Hat Abu Dhabi (2012).

Jorn Nystad, Oskar Flordal, and Jeremy Davies. 2013. Methods of and appara-
tus for using tree representations for representing arrays of data elements for
encoding and decoding data in data processing systems. US patent US8542939B2.
Jorn Nystad, Oskar Flordal, Jeremy Davies, and Ola Hugosson. 2015. Methods of
and apparatus for encoding and decoding data in data processing systems. US
patent US9014496B2.

Mathias Oberhuber, Martin Unterguggenberger, Lukas Maar, Andreas Kogler, and
Stefan Mangard. 2025. Power-Related Side-Channel Attacks using the Android
Sensor Framework. In NDSS.

Sioli O’Connell, Lishay Aben Sour, Ron Magen, Daniel Genkin, Yossi Oren, Hovav
Shacham, and Yuval Yarom. 2024. Pixel Thief: Exploiting SVG Filter Leakage in
Firefox and Chrome. In USENIX Security.

Gerald Palfinger, Bernd Priinster, and Dominik Julian Ziegler. 2020. AndroTIME:
Identifying Timing Side Channels in the Android APL In TrustCom.

Andrea Possemato, Andrea Lanzi, Simon Pak Ho Chung, Wenke Lee, and Yanick
Fratantonio. 2018. Clickshield: Are you hiding something? towards eradicating
clickjacking on android. In CCS.

Nandika Ravi. 2024. Google Maps gets rid of another feature on Web.
Online: https://tech.yahoo.com/general/articles/google-maps- gets-rid-another-
220221240.html. Accessed on March 29 2025.

Kimberly Ruth, Deepak Kumar, Brandon Wang, Luke Valenta, and Zakir Du-
rumeric. 2022. Toppling top lists: evaluating the accuracy of popular website
lists. In IMC.

Paul Stone. 2013. Pixel Perfect Timing Attacks with HTML5. White Paper. Context
Information Security. Online: https://web.archive.org/web/20130821233359/http:
//contextis.co.uk/files/Browser_Timing_Attacks.pdf.

Hritvik Taneja, Jason Kim, Jie Jeff Xu, Stephan van Schaik, Daniel Genkin, and
Yuval Yarom. 2023. Hot Pixels: Frequency, Power, and Temperature Attacks on
GPUs and ARM SoCs. In USENIX Security.

Giiliz Seray Tuncay, Jingyu Qian, and Carl A. Gunter. 2020. See No Evil: Phishing
for Permissions with False Transparency. In USENIX Security.

Yingchen Wang, Riccardo Paccagnella, Zhao Gang, Willy R. Vasquez, David
Kohlbrenner, Hovav Shacham, and Christopher W. Fletcher. 2024. GPU.zip: On
the Side-Channel Implications of Hardware-Based Graphical Data Compression.
In S&P.

Yingchen Wang, Riccardo Paccagnella, Elizabeth He, Hovav Shacham, Christo-
pher W. Fletcher, and David Kohlbrenner. 2022. Hertzbleed: Turning Power
Side-Channel Attacks Into Timing Attacks on x86. In USENIX Security.
Yingchen Wang, Riccardo Paccagnella, Alan Wandke, Zhao Gang, Grant Garrett-
Grossman, Christopher W. Fletcher, David Kohlbrenner, and Hovav Shacham.
2023. DVFS Frequently Leaks Secrets: Hertzbleed Attacks Beyond SIKE, Cryp-
tography, and CPU-Only Data. In S&P.

John Wilander. 2020. Full Third-Party Cookie Blocking and More. Online: https:
//webkit.org/blog/10218/full- third- party- cookie-blocking-and-more/. Accessed
on April 14 2025.

Longfei Wu, Benjamin Brandt, Xiaojiang Du, and Bo Ji. 2016. Analysis of click-
jacking attacks and an effective defense scheme for android devices. In CNS.
Jincheng Yu, vvb2060, Han Wang, Howard Wu, and YuSaki Kanade.
2025. Android Hidden Api Bypass. Online: https://github.com/LSPosed/
AndroidHiddenApiBypass. Accessed on April 10 2025.

https://github.com/TAC-UCB/pixnapping
https://github.com/TAC-UCB/pixnapping
https://issues.chromium.org/issues/40086984
https://chromestatus.com/feature/5088147346030592
https://chromestatus.com/feature/5088147346030592
https://issues.chromium.org/issues/40063650
https://issues.chromium.org/issues/40943106
https://issues.chromium.org/issues/381109468
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/guide/topics/manifest/activity-element
https://developer.android.com/guide/topics/manifest/activity-element
https://chromestatus.com/feature/5101991698628608
https://chromestatus.com/feature/5101991698628608
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/activities/intro-activities
https://developer.android.com/google/play/requirements/target-sdk
https://developer.android.com/google/play/requirements/target-sdk
https://developer.android.com/develop/ui/views/layout/webapps/overview-of-android-custom-tabs
https://developer.android.com/develop/ui/views/layout/webapps/overview-of-android-custom-tabs
https://developer.android.com/training/package-visibility
https://developer.android.com/guide/components/activities/background-starts
https://developer.android.com/guide/components/activities/background-starts
https://source.android.com/docs/core/graphics/surfaceflinger-windowmanager
https://source.android.com/docs/core/graphics/surfaceflinger-windowmanager
https://issues.chromium.org/issues/401081629
https://issues.chromium.org/issues/401081629
https://developer.android.com/guide/components/activities/tasks-and-back-stack
https://developer.android.com/guide/components/activities/tasks-and-back-stack
https://support.google.com/googleplay/android-developer/answer/10158779
https://support.google.com/googleplay/android-developer/answer/10158779
https://source.android.com/docs/core/graphics/implement-vsync
https://source.android.com/docs/core/graphics/implement-vsync
https://source.android.com/docs/core/display/window-blurs
https://source.android.com/docs/core/display/window-blurs
https://web.archive.org/web/20120207083807/http://www.schemehostport.com/2011/12/timing-attacks-on-css-shaders.html
https://web.archive.org/web/20120207083807/http://www.schemehostport.com/2011/12/timing-attacks-on-css-shaders.html
https://github.com/zakird/crux-top-lists
https://github.com/zakird/crux-top-lists
https://hacks.mozilla.org/2021/02/introducing-state-partitioning/
https://web.dev/articles/samesite-cookies-explained
https://support.mozilla.org/en-US/kb/introducing-total-cookie-protection-standard-mode
https://support.mozilla.org/en-US/kb/introducing-total-cookie-protection-standard-mode
https://tech.yahoo.com/general/articles/google-maps-gets-rid-another-220221240.html
https://tech.yahoo.com/general/articles/google-maps-gets-rid-another-220221240.html
https://web.archive.org/web/20130821233359/http://contextis.co.uk/files/Browser_Timing_Attacks.pdf
https://web.archive.org/web/20130821233359/http://contextis.co.uk/files/Browser_Timing_Attacks.pdf
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/
https://github.com/LSPosed/AndroidHiddenApiBypass
https://github.com/LSPosed/AndroidHiddenApiBypass

Pixnapping: Bringing Pixel Stealing out of the Stone Age

Figure 12: Order of 4 x 4 pixel panes within a 16 X 16 pixel
window in Mali surface encoding.

A Pixel Enlargement Coordinate Converter
A.1 Google Pixel phones

We create a formula to calculate the offset between the coordinates
used for the crop API and the ones used for the activity’s window.
First, we collect a set of offsets from the window’s coordinates to
the crop API’s coordinates and observe a linear relationship in the
y offset. Using linear regression, we determine the y offset to be
offset_y = round(—0.02642857143 - win_y + 0.03571428571) where
win_y is the window’s y coordinate and offset_y is the offset from
the window’s y coordinate to the crop’s y coordinate. The crop
API’s y coordinate can then be calculated by win_y + offset_y.

A.2 Samsung Galaxy S25

As in Appendix A.1, we start by collecting a set of offsets be-
tween the coordinates for the SurfaceControl and the window.
We empirically find that the offset from the window’s y coordinate
to the SurfaceControl’s y coordinate is: offset_y = round(—3 =
(win_y/50) — 3) where win_y is the window’s y coordinate and
offset_y is the offset from the window’s y coordinate to the Surface
Control’s y coordinate. To calculate the SurfaceControl’s y co-
ordinate, we can again use win_y + offset_y. We also observe that
we always need to adjust the x coordinate of the window by -1 to
get the x coordinate for the SurfaceControl.

B Reverse Engineering the Graphical Data
Compression Algorithm on Mali GPUs

We adapt Wang et al’s dump utility [51] to create OpenGL textures
with pixel values of our choice and save the corresponding com-
pressed Mali surface. We then use these surfaces to reverse engineer
the undocumented Mali compression format and implement a de-
compression utility. Our findings are summarized below.

Mali compression applies to 16X 16 pixel windows, broken up into
4 X 4 pixel panes. In contrast to AMD and Intel, where an auxiliary
surface holds compression metadata for a main surface [51], a single
Mali surface comprises metadata and, afterwards, pixel data. Each
window has 16 bytes of metadata: a 32-bit offset into the surface
buffer where the window data are found, followed by 6 bits per
pane specifying the length, in bytes, of the data for the pane. Panes
are listed, in both metadata and data regions, in an unusual order
that ensures that consecutive panes are contiguous (Figure 12).

As we show below, the compressed representation of a pane
is at least 2 bytes long, so metadata length values 0 and 1 have
special meaning: 0 that the pane has the same pixel values as the
pane before it (in the order of Figure 12); 1 that the pane is stored
uncompressed, as 64 bytes of RGBA pixels in row-major order.

Compressed panes use a YUVA colorspace (for decorrelation) in
which the U and V channels are 9 bits, not 8. To translate from YUV
to RGB, one sets G; « | (515+4Y; —U; = V;) /4|, R; < U; +G; — 256,
and B; < V; + G; — 256.

Within a 4 x 4 pixel pane, each color channel is compressed
separately. Let X stand for one of Y, U, V, or A.

The main idea behind Mali compression is to arrange the color
values in a height-2 quadtree; child indices 0, 1, 2, and 3 correspond
to directions NW, NE, SW, and SE, respectively. Let the root node
be Xy, the intermediate nodes be X, ;, and leaves be X, ; ;, for
i,j € {0,1,2,3}. So, for example, X, 1; is the channel value for
the top right pixel. Each interior node is set as the minimum of
its children, ie., X,; < min; X, ;; and X, < min; X, ;. Now
consider a differential representation of this tree, where nodes
below the root are represented by their difference from their parent,
ie, AXy;j «— Xyij— Xpiand AX, ; « X, — X,. Observe that all
AX values are nonnegative by construction, and that at least one
child of every interior node must have AX = 0.

The compressed representations include encodings of Xy, AXy ;,
and AX,; ;, given which the GPU can reconstruct the channel value
for each pixel.

Instead of encoding the AX values directly using a universal code
such as exponential Golomb, Mali compression separately specifies
their lengths using a separate height-1 quadtree. The length tree’s
root L, specifies the encoded length of the four AX, ; values; for
each i, the length tree leaf L, ; specifies the encoded length of the
four AX,;; values. As before, we use a differential representation,
AL, ; < Ly ; — Ly. Unlike values in the X tree and its differential
representation, L and AL values can be negative. A negative Ly ;
means that AX,;; = 0 for all j. A negative L, means that all AX
nodes are 0, i.e., the channel is constant; L, = —2 additionally means
that X, takes on the default channel value and is not encoded. (For
the A channel, the default value is 255.)

With the notation above, we can describe the pane encoding:

o L, for each channel, encoded as a 4-bit signed value (in
two’s complement).

e AL, ; for each channel where L, > 0, encoded as a 2-bit
signed values (in two’s complement).

e X, for each channel where L, # —2, encoded as an 8- or
9-bit unsigned value depending on the channel.

o AX, ; for each channel where L, > 0, encoded as follows.
If L, calls for a single bit, then the value of AX, ; is given
for each i, for a total of 4 bits. If L, calls for more than one
bit, then two bits encode the index of a zero child, i.e., i’
such that AX, = 0, and then 3L, bits encode the value of
AX,; for i # i’, interleaved.

o Finally, for each pixel quadrant i and for each channel where
Ly > 0, AXy j, encoded like AX, ; above, either as 4 bits
(if Ly; = 1) oras 2 + 3L, ; bits (if Ly ; > 1).

The above ideas are laid out in two Arm patents [40, 41], but the
implementation differs from the patents in many details.

	Abstract
	1 Introduction
	2 Background
	2.1 Android app architecture and graphics
	2.2 Android hidden API
	2.3 Browser pixel stealing attacks
	2.4 GPU.zip side channel

	3 Android Pixel Stealing Framework
	3.1 Step 1: Submitting victim pixels to the Android rendering pipeline
	3.2 Step 2: Computing on victim pixels
	3.3 Step 3: Measuring the side effects of computations on victim pixels

	4 Framework Instantiations
	4.1 Instantiation on Google Pixel phones
	4.2 Instantiation on a Samsung Galaxy S25
	4.3 Evaluation

	5 End-To-End Attacks
	5.1 Browsers
	5.2 Non-browser Android apps

	6 Case Study: Ephemeral 2FA Code Recovery
	7 Discussion
	8 Related Work
	9 Conclusion
	References
	A Pixel Enlargement Coordinate Converter
	A.1 Google Pixel phones
	A.2 Samsung Galaxy S25

	B Reverse Engineering the Graphical Data Compression Algorithm on Mali GPUs

